An Approach for Fuzzy Modeling based on Self-Organizing Feature Maps Neural Network
نویسندگان
چکیده
Exploration of large and high-dimensional data sets is one of the main problems in data analysis. Self-organizing feature maps (SOFM) is a powerful technique for clustering analysis and data mining. Competitive learning in the SOFM training process focuses on finding a neuron that its weight vector is most similar to that of an input vector. SOFM can be used to map large data sets to a simpler, usually one or two-dimensional topological structure. In this paper, we present a new approach to acquisition of initial fuzzy rules using SOFM learning algorithm, not only for its vector feature, but also for its topological. In general, fuzzy modeling requires two stages: structure identification and parameter learning. First, the algorithm partitions the input space into some local regions by using SOFM, then it determines the decision boundaries for local input regions, and finally, based on the decision boundaries, it learns the fuzzy rule for each local region by recursive least squares algorithm. The simulation results show that the proposed method can provide good model structure for fuzzy modeling and has high computing efficiency.
منابع مشابه
Landforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملNon-Linear Time Series Modeling with Self-Organization Feature Maps
A locally linear approach based on Kohonen self-organizing feature mapping (SOFM) is proposed for the modeling of non-linear time series. This approach exploits the neighborhood preserving property of Kohonen feature maps. The key difference is that the local model fitting is performed directly over a matched neighborhood of the constructed SOFM neural field. The initial results show that this ...
متن کاملMunicipal Creditworthiness Modelling by Neural Networks
The paper presents the design of municipal creditworthiness parameters. Further, the design of model for municipal creditworthiness classification is presented. The realized data pre-processing makes the suitable economic interpretation of results possible. Municipalities are assigned to clusters by unsupervised methods. The combination of Kohonen’s self-organizing feature maps and K-means algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013